If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+20X-11250=0
a = 1; b = 20; c = -11250;
Δ = b2-4ac
Δ = 202-4·1·(-11250)
Δ = 45400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{45400}=\sqrt{100*454}=\sqrt{100}*\sqrt{454}=10\sqrt{454}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-10\sqrt{454}}{2*1}=\frac{-20-10\sqrt{454}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+10\sqrt{454}}{2*1}=\frac{-20+10\sqrt{454}}{2} $
| 90^x=120 | | 5/2x+5=3x-1 | | 2×n-5=+10+5 | | 7w+18=90 | | 4x(2)-4=15x | | -10=12.0t-4.9t2 | | (x+3)-(x-3)=72 | | 4n/10+15=50 | | 5n÷8=10 | | 0.025x100=10 | | 4.9t2-15t-20=0 | | x+1.11x=15 | | 3h=9.8 | | 6y−2=4y+6 | | x+0.11x=15 | | 2x-19.5=5x | | 1.3x=22+5x | | y*(-4)=16 | | 4x+7=33. | | 2d-8d+16=0 | | 0.64(x–1.1)=0.16 | | 3–4x=2x–9 | | 3z-4(z-1)=0 | | 58+-1y=4+-2y | | 3(x-10)=-x-6 | | 58+-1y=4+2y | | 16+2y=58+y | | 16+5=3a | | 6x–5=2x+19 | | x*1,5^12=18000000 | | 1,5^12x=18000000 | | 5x+(-55)=2 |